OLED的基本结构是由一薄而透明具半导体特性的铟锡氧化物(ITO),与电源正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:电洞传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极电洞与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三原色,构成基本色彩。OLED的特性是自己发光,不像TFTLCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为21世纪最具前途的电子技术之一。
有机发光二极体的发光原理和无机发光二极体相似。当元件受到直流电(DirectCurrent,DC)所衍生的顺向偏压时,外加电压能量将驱动电子(Electron)与电洞(Hole)分别由阴极与阳极注入元件,当两者在传导中相遇、结合,即形成所谓的电子-电洞复合(Electron-HoleCapture)。而当化学分子受到外来能量激发后,若电子自旋(ElectronSpin)和基态电子成对,则为单重态(Singlet),其所释放的光为所谓的萤光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态(Triplet),其所释放的光为所谓的磷光(Phosphorescence)。
当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子(LightEmission)或热能(HeatDissipation)的方式放出,其中光子的部分可被利用当作显示功能;但有机萤光材料在室温下并无法观测到三重态的磷光,能以PM-OLED元件发光效率之理论极限值仅25%。

PM-OLED发光原理是利用材料能阶差,将释放出来的能量转换成光子,所以我们可以选择适当的材料当作发光层或是在发光层中掺杂染料以得到我们所需要的发光颜色。此外,一般电子与电洞的结合反应均在数十奈秒(ns)内,故PM-OLED的应答速度非常快。
OLED器件的结构如下图所示。

OLED的发光过程通常由以下5个阶段完成。
1.在外加电场的作用下载流子的注入:电子和空穴分别从阴极和阳极向夹在电极之间的有机功能薄膜注入。
2.载流子的迁移:注入的电子和空穴分别从电子输送层和空穴输送层向发光层迁移。
3.载流子的复合:电子和空穴复合产生激子。
4.激子的迁移:激子在电场的作用下迁移,能量传递给发光分子,并激发电子从基态跃迁到激发态。
5.电致发光:激发态能量通过辐射跃迁,产生光子,释放出能量。